• Home
  • Video
  • Games
  • Applications
  • Audio
  • Porn
  • Other
  • TOP-100
  • Sitemap
  • RSS Feed
  • Feedback
>

Videos

  • Video
  • Movies
  • UHD/4k - Movies
  • Movies DVDR
  • Music videos
  • Movie clips
  • TV shows
  • UHD/4k - TV shows
  • Handheld
  • HD - Movies
  • HD - TV shows
  • 3D
  • CAM/TS
  • Other

Games

  • Games
  • PC
  • Mac
  • PSx
  • XBOX360
  • Wii
  • Handheld
  • IOS (iPad/iPhone)
  • Android
  • Other

Applications

  • Applications
  • Windows
  • Mac
  • UNIX
  • Handheld
  • IOS (iPad/iPhone)
  • Android
  • Other

Audio

  • Audio
  • Music
  • Audio books
  • Sound clips
  • FLAC
  • Other

Porn

  • Porn
  • Movies
  • UHD/4k - Movies XXX
  • Movies DVDR
  • Pictures
  • Games
  • HD - Movies
  • Movie clips
  • Other

Other

  • Other
  • E-books
  • Comics
  • Pictures
  • Covers
  • Physibles
  • Other

    Deep learning using Tensorflow Lite on Raspberry Pi

    Deep learning using Tensorflow Lite on Raspberry Pi
    Dear users!
    Don't forget to stay on the giveaway after downloading the torrent! Help others to download too - support free sharing!

    If you are NOT able to download the torrent file, then use VPN!

    Size: 3.29 GiB (3528242008 Bytes)
    Uploaded by: tuts756

    Download Torrent Deep learning using Tensorflow Lite on Raspberry Pi

    Number of files: 72
    Info Hash: 65836B57FDE0DF3BB21D6DC5DF238BAA79CD1C1D

    ⇒ NFO:
    Description Course Workflow: This course is focused on Embedded Deep learning in Python . Raspberry PI 4 is utilized as a main hardware and we will be building practical projects with custom data . We will start with trigonometric functions approximation . In which we will generate random data and produce a model for Sin function approximation Next is a calculator that takes images as input and builds up an equation and produces a result .This Computer vision based project is going to be using convolution network architecture for Categorical classification Another amazing project is focused on convolution network but the data is custom voice recordings . We will involve a little bit of electronics to show the output by controlling our multiple LEDs using own voice . Unique learning point in this course is Post Quantization applied on Tensor flow models trained on Google Colab . Reducing size of models to 3 times and increasing inferencing speed up to 0.03 sec per input . Sections : Non-Linear Function Approximation Visual Calculator Custom Voice Controlled Led Outcomes After this Course : You can create Deep Learning Projects on Embedded Hardware Convert your models into Tensorflow Lite models Speed up Inferencing on embedded devices Post Quantization Custom Data for Ai Projects Hardware Optimized Neural Networks Computer Vision projects with OPENCV Deep Neural Networks with fast inferencing Speed Hardware Requirements Raspberry PI 4 12V Power Bank 2 LEDs ( Red and Green ) Jumper Wires Bread Board Raspberry PI Camera V2 RPI 4 Fan 3D printed Parts Software Requirements Python3 Motivated mind for a huge programming Project Before buying take a look into this course GitHub repository Who this course is for: Developers Electrical Engineers Artificial Intelligence Enthusiasts Requirements Basic Electronics Understanding Basic Python Programming Hardware : Raspberry pi 4 Hardware : 12V Power Bank Hardware : Raspberry PI Camera V2 Hardware : 2 LEDs ( Red and Green ) Hardware : Bread Board Hardware : RPI 4 Fan Hardware : 3D printed Parts Hardware : Jumper Wires Last Updated 9/2022

    Category: Other | Added: 29.01.2023 | Author: ADMIN | Views: 1


  • Home
  • Video
  • Games
  • Applications
  • Audio
  • Porn
  • Other
  • © 2024 RUTOR-BEST.RU

Администрация сайта не несёт ответственности за содержание материалов находящихся на ресурсе. Если вы являетесь правообладателем и хотите полностью или частично убрать свой материал с нашего сайта, то напишите администрации с ссылками на соответствующие документы. Ваша собственность находилась в свободном доступе и только поэтому была опубликована на нашем сайте. Сайт некоммерческий, и мы не имеем возможности проверять все публикации пользователей.

Жалобы принимаются по адресу support@rutor-best.ru | Обратная связь

Copyright © 2024 - RUTOR-BEST.RU

Яндекс.Метрика